Code Date Venue Early Bird Fee Fee
PWR1012 29 Nov - 03 Dec 2021 Virtual Instructor Led Training (VILT) SGD 3,099 SGD 3,299 Remind me of Course Dates
PWR1012 29 Nov - 03 Dec 2021 Virtual Instructor Led Training (VILT) USD 2,262 USD 2,408 Remind me of Course Dates

Learn in teams and save more! Enjoy group discounts of up to 50% off normal fees for team based learning. Contact us on info@asiaedge.net to learn more today!

Code

PWR1012

Date

29 Nov - 03 Dec 2021

Venue

Virtual Instructor Led Training (VILT)

Early Bird Fee

SGD 3,099

Fee

SGD 3,299

Code

PWR1012

Date

29 Nov - 03 Dec 2021

Venue

Virtual Instructor Led Training (VILT)

Early Bird Fee

USD 2,262

Fee

USD 2,408

About this Virtual Instructor Led Training (VILT) 

This course provides a detailed description of all combustion equipment and systems used in pulverized coal boilers and circulating fluidized bed (CFB) boilers, including pulverized coal burning systems, coal feeder, pulverizer and classifier, pulverized coal burners, furnace and fans. This course also provides a comprehensive explanation of all boiler combustion control systems including pulverizer control system, combustion control, control of coal and air flow into the boiler, furnace pressure control, oxygen trim control, nitrogen oxides (NOx) and sulfur oxides (SOx) control, control of ammonia injection, flue gas dew point control, purge control, flame monitoring and tripping system as well as their tuning methods.

  • Boiler Combustion Equipment and Systems: Gain an in-depth understanding of all boiler combustion equipment and systems including pulverized coal burning systems, coal feeder, pulverizer and classifier, pulverized coal burners, furnace and fans
  • Boiler Combustion Control Systems: Gain a thorough understanding of all boiler combustion control systems for pulverized coal boilers, and CFB boilers including pulverizer control system, combustion control, control of coal and air flow into the boiler, furnace pressure control, oxygen trim control, nitrogen oxides (NOx) and sulfur oxides (SOx) control, control of ammonia injection, flue gas dew point control, purge control, flame monitoring and tripping system
  • Boiler Conventional Control Systems: Gain an in-depth understanding of all boiler conventional control systems including drum level feedwater control, main steam and reheat steam temperature control, boiler limits and run-back, sliding of variable pressure control, heat rate optimization with sliding pressure control, and boiler-turbine coordinated control
  • Boiler NFPA 85 Code (Boiler and Combustion Systems Hazards Codes) and American National Standard Institute / Instrument Society of America Code (ANSI / ISA-77-44-01-2007 Code): Learn about the NFPA 85 code and ANSI / ISA-77-44-01-2007 code
  • Burner Management System and Boiler Permissive Starting Logic and Protective Tripping Logic: Gain an in-depth understanding of burner management system and boiler permissive starting logic and protective tripping logic
  • Boiler Efficiency Calculations: Learn how to calculate the boiler efficiency using the direct and indirect methods
  • Factors Affecting the Efficiency and Emissions of Boilers: Understand all the factors which affect the boiler efficiency and emissions
  • Methods Used to Improve the Efficiency of Boilers: Learn about all the methods used to improve the efficiency of pulverized coal boilers, and CFB boilers including improvement to their combustion efficiency and control systems performance
  • Boiler Instrument and Piping Diagrams: Gain an in-depth understanding of all boiler instrument and piping diagrams
  • CFB and Pulverized Coal Boilers Equipment and Systems: Learn about various types of equipment and systems used in CFB and pulverized coal boilers including economizers, steam drum, superheaters, air preheaters, ammonia injection systems, etc.
  • Engineers of all disciplines
  • Managers
  • Technicians
  • Maintenance personnel
  • Other technical individuals

The VILT will be delivered online in 5 half-day sessions comprising 4 hours per day, with 1 x 10 minutes break per day, including time for lectures, discussion, quizzes and short classroom exercises.

Additionally, some self-study will be requested. Participants are invited but not obliged to bring a short presentation (10 mins max) on a practical problem they encountered in their work. This will then be explained and discussed during the VILT. A short test or quiz will be held at the end the course.

Your specialist course leader has more than 32 years of practical engineering experience with Ontario Power Generation (OPG), one of the largest electric utility in North America. He was previously involved in research on power generation equipment with Atomic Energy of Canada Limited at their Chalk River and Whiteshell Nuclear Research Laboratories.

While working at OPG, he acted as a Training Manager, Engineering Supervisor, System Responsible Engineer and Design Engineer. During the period of time, he worked as a Field Engineer and Design Engineer, he was responsible for the operation, maintenance, diagnostics, and testing of gas turbines, steam turbines, generators, motors, transformers, inverters, valves, pumps, compressors, instrumentation and control systems. Further, his responsibilities included designing, engineering, diagnosing equipment problems and recommending solutions to repair deficiencies and improve system performance, supervising engineers, setting up preventive maintenance programs, writing Operating and Design Manuals, and commissioning new equipment.

Later, he worked as the manager of a section dedicated to providing training for the staff at the power stations. The training provided by him covered in detail the various equipment and systems used in power stations.

In addition, he has taught courses and seminars to more than four thousand working engineers and professionals around the world, specifically Europe and North America. He has been consistently ranked as “Excellent” or “Very Good” by the delegates who attended his seminars and lectures.

He written 5 books for working engineers from which 3 have been published by McGraw-Hill, New York. Below is a list of the books authored by him;

  • Power Generation Handbook: Gas Turbines, Steam Power Plants, Co-generation, and Combined Cycles, second edition, (800 pages), McGraw-Hill, New York, October 2011.
  • Electrical Equipment Handbook (600 pages), McGraw-Hill, New York, March 2003.
  • Power Plant Equipment Operation and Maintenance Guide (800 pages), McGraw-Hill, New York, January 2012.
  • Industrial Instrumentation and Modern Control Systems (400 pages), Custom Publishing, University of Toronto, University of Toronto Custom Publishing (1999).
  • Industrial Equipment (600 pages), Custom Publishing, University of Toronto, University of Toronto, University of Toronto Custom Publishing (1999).

Furthermore, he has received the following awards:

  • The first “Excellence in Teaching” award offered by PowerEdge, Singapore, in December 2016
  • The first “Excellence in Teaching” award offered by the Professional Development Center at University of Toronto (May, 1996).
  • The “Excellence in Teaching Award” in April 2007 offered by TUV Akademie (TUV Akademie is one of the largest Professional Development centre in world, it is based in Germany and the United Arab Emirates, and provides engineering training to engineers and managers across Europe and the Middle East).
  • Awarded graduation “With Distinction” from Dalhousie University when completed Bachelor of Engineering degree (1983).

Lastly, he was awarded his Bachelor of Engineering Degree “with distinction” from Dalhousie University, Halifax, Nova Scotia, Canada. He also received a Master of Applied Science in Engineering (M.A.Sc.) from the University of Ottawa, Canada. He is also a member of the Association of Professional Engineers in the province of Ontario, Canada.